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On the Design of Concatenated Coding Systems
With Interleavers

D. Divsalar1 and R. J. McEliece2

In this article, we will study a class of concatenated coding communications sys-
tems that is built from convolutional codes and interleavers. These systems include
as special cases both the classical turbo codes [1,2] and the serial concatenation of
convolutional codes [4]. Our main results are a method for computing a conjectured
interleaving gain exponent and for optimizing the effective free distance, d2. We
include proofs of theorems about d2 that were stated without proof in [6].

I. Introduction

Our goal in this article is to introduce a class of generalized concatenated convolutional coding systems
with interleavers that includes both parallel concatenated convolutional codes (turbo codes) [1,2] and serial
concatenated convolutional codes [4] as special cases. We estimate the average (over all interleavers)
performance of these codes using the classical union bound technique, which leads us to two important
design parameters: the interleaving gain exponent, βM , and the effective free distance, hM . We shall
see that these parameters are relatively easy to compute, and so they can serve the design engineer as
preliminary figures of merit.

Here is an outline of the article. In Section II, we will briefly review the union bound, as it applies
to block codes, and see the importance of the input–output weight enumerator (IOWE). In Section III,
we will introduce our generalized concatenation structure and give a formula for the average (over the
ensemble of all interleavers) IOWE when the component codes are block codes. In Section IV, we will
replace the block codes of Section III with truncated convolutional codes and study the parameters βM
and hM mentioned above. In particular, we will show that, for both parallel and serial concatenation, hM
is maximized if the d2 parameter of certain of the component codes is maximized. Then, in Section V,
we will state and prove two uppper bounds on d2 that can be used to identify component codes with
optimal or near-optimal values of d2. Finally, in Section VI, we present tables of convolutional codes for
which d2 is as large as possible.

II. Union Bounds on the Performance of Block Codes

Consider a linear (n,N) block code C with code rate Rc = N/n and minimum distance hm. The
union bounds on the word-error probability, PW , and bit-error probability, Pb, of the code C over a
memoryless binary-input channel, using maximum-likelihood decoding, have the well-known form
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PW ≤
n∑

h=hm

N∑
w=1

Aw,hz
h (1)

Pb ≤
n∑

h=hm

N∑
w=1

w

N
Aw,hz

h (2)

where Aw,h denotes the number of codewords in C with input weight w and output weight h. The Aw,h’s
are called the input–output weight coefficients (IOWCs). The function zh represents an upper bound
on the pairwise error probability for two codewords separated by Hamming (output) distance h. For
additive white Gaussian noise (AWGN) channels, we have z = e−RcEb/N0 , where Eb/N0 is the signal-to-
noise ratio per bit. For independent Rayleigh fading channels, assuming coherent detection, and perfect
estimate of fading samples, we have z = [1 +RcEb/N0]−1. All these results apply to convolutional codes
as well, if we construct an equivalent block code by terminating the convolutional code. These results
also apply to concatenated codes including parallel [1,2] and serial [4] concatenations and other types of
code concatenations.

III. Computation of AC
w,h for Concatenated Codes With Random Interleavers

In this section, we consider a general class of concatenated coding systems of the type depicted in
Fig. 1, with q encoders (circles) and q− 1 interleavers (boxes). The ith code Ci is an (ni, Ni) linear block
code, and the ith encoder is preceded by an interleaver (permuter) Pi of size Ni except for C1, which is
not preceded by an interleaver but rather is connected directly to the input. The overall structure must
have no loops, i.e., it must be a graph-theoretic tree.
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Fig. 1.  An example of concatenated codes with tree structure sI = {1,2},
sO = {2,3,4}, and sO = {1}.

Define sq = {1, 2, · · · , q} and subsets of sq by sI = {i ∈ sq : Ci connected to input}, sO = {i ∈ sq :
Ci connected to output}, and its complement sO. The overall system depicted in Fig. 1 is then an encoder
for an (n,N) block code with n =

∑
i∈sO ni.

If we know the IOWC’s A(i)
wi,hi

’s for the constituent codes Ci, we can calculate the average IOWC’s
Aw,h for the overall system (averaged over the ensemble of all possible interleavers), using the uniform
interleaver technique [2]. (A uniform interleaver is defined as a probabilistic device that maps a given
input word of weight w into all distinct

(
Ni
w

)
permutations of it with equal probability p = 1/

(
Ni
w

)
.) The

result is

Aw,h =
∑

hi:i∈sO
Σhi=h

∑
hi:i∈sO

A
(1)
w1,h1

q∏
i=2

A
(i)
wi,hi(
Ni
wi

) (3)
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In Eq. (3), we have wi = w if i ∈ sI , and wi = hj if Ci is preceded by Cj (see Fig. 2.). For example, for
the (n2 + n3 + n4, N) encoder of Fig. 1, the formula of Eq. 3 becomes

Aw,h =
∑

h1,h2,h3,h4
(h2+h3+h4=h)

A
(1)
w1,h1

A
(2)
w2,h2(
N2
w2

) A
(3)
w3,h3(
N3
w3

) A
(4)
w4,h4(
N4
w4

) =
∑

h1,h2,h3,h4
(h2+h3+h4=h)

A
(1)
w,h1

A
(2)
w,h2(
N
w

) A
(3)
h1,h3(
n1
h1

) A
(4)
h1,h4(
n1
h1

)

(The formula of Eq. (3) is intuitively plausible if we note that the term A
(i)
wi,hi

/
(
Ni
wi

)
is the probability

that a random input word to Ci of weight wi will produce an output word of weight hi.)

C i

h i
C jP j

n i N j

w j
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, N i 

) (n j 
, N j 

)

Fig. 2.  Ci , an (ni , Ni ) encoder, is connected to Cj , an (nj , Nj )
encoder, by an interleaver of size Nj .  We have the "boundary
conditions" Nj = ni and wj = hi .

IV. Design of Concatenated Codes

In this section, we will consider systems of the form depicted in Fig. 1, in which the individual encoders
are terminated convolutional encoders, and study the behavior of the average IOWCs in Eq. 3 as the
input block length N approaches infinity. To this end, we define, for each fixed w and h,3

β(w, h) = lim
N→∞

logN A
C
w,h (4)

Two fundamental design parameters that we shall study here are

βM = max
h

max
w

β(w, h) (5)

and

hM = min{h : β(w, h) = βM for some w} (6)

Extensive numerical simulations, and theoretical considerations that are not fully rigorous (see, e.g., [2]
and [4]), lead us to make the following conjecture about the behavior of the union bounds, Expressions (1)
and (2), for systems of the type shown in Fig. 1, which we denote by PUBW and PUBb .

Conjecture 1. There exists a positive number z0, which depends on the q component convolutional
codes and the tree structure of the overall system, but not on N, such that, for any fixed z < z0, as the
block length N becomes large,4

3 Note that the β’s in this article are exactly 1 more than the α’s in [3] and [4].

4 Because of the inherent properties of the union bound, z0 will presumably be less than the “cutoff rate,” which for a
binary code of rate r is zcutoff = 21−r − 1.
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PUBW = O(NβM ) (7)

PUBb = O(NβM−1) (8)

Equation (7) says that if βM < 0, then, for a given z < z0, the word-error probability of the concate-
nated code decreases to zero as the input block size is increased. Equation (8) says that, if the weaker
condition βM < 1 is satisfied, the bit-error probability dereases to zero as the input block size is increased.
When βM < 0, we say we have word-error probability interleaving gain, and when βM < 1, we say we
have bit-error probability interleaving gain. Furthermore, by Eq. (6), the terms in the union bound of
order NβM will be multiplied by zhM , so for a fixed value of βM , one expects systems with larger hM to
perform better. In designing a system of the type depicted in Figure 1, our primary concern will be to
minimize βM , and for a given value of βM , our secondary concern will be to maximize hM .

We now shall discuss the calculation of β(w, h), βM , and hM for a concatenated system of the type
depicted in Fig. 1, assuming that each of the encoders is a convolutional encoder. We use analytical tools
introduced in [3] and [4].

Consider an (n, k,m) convolutional code C with rate R = k/n and memory m, and the corresponding
sequence of (N/R,N −m) block codes C(N), for N = k, 2k, · · ·, obtained by truncating the convolutional
code at depths L = 1, 2, · · ·. By definition, C(N) consists of the output labels of the trellis paths from
the all-zeros state back to the all-zeros state of length L = N/k. Let ACw,h,j be the input–output weight
coefficients for those codepaths in the convolutional code C consisting of the concatenation of exactly j
simple codepaths, with no gaps between them (see Fig. 3). We can “expand” each codepath of the type
depicted in Fig. 3 into several codewords from C(N) by inserting zero runs before each of the j simple
codepaths, so that the overall path length is N/k. If the ith simple codepath starts in position li, then
clearly

1 ≤ l1 < l2 < · · · < lj ≤
N

k
(9)

Since there are
(
N/k
j

)
set of indices satisfying Expression (9), we have the following bound on the IOWE

of the code C(N):

A
(N)
w,h ≤

∑
j≥1

(
N/k

j

)
ACw,h,j (10)
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Fig. 3.  A code sequence in the convolutional code C consisting of the concatenation of j
simple codepaths.  The IOWC for such codepaths is denoted by AC      .w ,h , j
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Since in Eq. (4) w and h are fixed and N →∞, we use the estimate

(
N

j

)
≈ N j

j!
(11)

Substituting this estimate into Expression (10), we obtain

A
(N)
w,h ≈

∑
j≥1

N j

j!kj
ACw,h,j (12)

Using the estimate in Expression (12), and Expression (11) in Eq. (3) for each constituent code, we obtain

β(w, h) = max

{
q∑
i=1

ji(wi, hi)−
q∑
i=2

wi :
∑
i∈SO

hi = h

}
(13)

where ji = ji(w, h) is defined by

ji(w, h) = max{j : ACiw,h,j 6= 0}

Next we discuss the computation of the quantities ji(wi, hi). For any convolutional code C, given a
j-segment code sequence of the form depicted in Fig. 3, we have w1 + · · ·+wj = w and h1 + · · ·+hj = h.
Thus, if wm denotes the minimum possible nonzero input weight that produces a finite-weight codeword,
we have jwm ≤ w, so that j ≤ w/wm. Similarly, if hm denotes the minimum nonzero codeword weight,
we have jhm ≤ h, so that j ≤ h/hm. Thus, we have

jC(w, h) ≤ min
{⌊

w

wm

⌋
,

⌊
h

hm

⌋}
(14)

Note that if C is nonrecursive, we have wm = 1, whereas if C is recursive, wm = 2. Also, hm is the free
distance of the code.

Our object is to select the component codes so as to minimize βM , so that the bounds in Expressions (7)
and (8) will be as small as possible. For example, consider the parallel concatenation of q codes, with
q − 1 interleavers. If each of the component codes is recursive, then ji(wi, hi) ≤ wi/2 and wi = w, for
i = 1, · · · , q, and so by Expression (13),

β(w, h) ≤ q
⌊w

2

⌋
− (q − 1)w

Since this bound is a decreasing function of w ≥ 2, its maximum occurs for w = 2, so that

βM ≤ −q + 2

(If any of the component codes is nonrecursive, a larger value of βM results). For a classical turbo code
with q = 2, we have βM = 0, so by Eq. (7) there is no word-error probability interleaving gain. This
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suggests that the word-error probability for classic turbo codes with a uniform interleaver will not improve
with input block size, a fact that has been verified by numerical evaluations of the union bound. Thus,
when all codes are recursive, to maximize the corresponding hM , we should maximize d2, which is defined
to be the minimum output weight for weight-2 input sequences for each constituent code.

As another example, consider the serial concatenation of two convolutional codes. If the inner code is
recursive, then we obtain from Eq. (13) β(w, h) = jo + ji−wi, where “o” denotes the outer code and “i”
denotes the inner code. But by Expression (14),

jo + ji − wi ≤
⌊
ho

dofree

⌋
+
⌊
ho

2

⌋
− ho

where ho is the output weight of the outer encoder. This is a decreasing function of h0 ≥ dofree, so the
minimum occurs at h0 = dofree, and so we have

β(w, h) ≤ −
⌊
dofree + 1

2

⌋
+ 1

Therefore, for serial concatenated codes, if dof ≥ 3, βM ≤ −1, and there is interleaving gain for both bit-
and word-error probabilities. (If the inner code is nonrecursive, βM ≥ 0, and there is no interleaving
gain.)

Define di2 to be the minimum weight of codewords of the inner code generated by weight-2 input
sequences. We obtain different values for hM for even and odd values of dof . Then using arguments
similar to those leading to Expression (14), we find that for even dof , the output weight hM associated
with the highest exponent of N is given by

hM =
dofd

i
2

2
(15)

whereas for dof odd, the value of hM is given by

hM =
(dof − 3)di2

2
+ di3 (16)

where di3 is the minimum weight of sequences of the inner code generated by a weight-3 input sequence.
Thus, among inner codes with maximum d2, we should choose those with maximum d3.

It follows from the arguments in this section that, in choosing the convolutional code fragments in
Fig. 1, it is wise to choose those connected to the output to have feedback, and to have the largest possible
value of d2. In the next section (Section V), we will state and prove two theoretical results about the
maximum possible value of d2 for an infinite impulse response (IIR) convolutional code fragment with
given values of n, k, and m. Then, in Section VI, we will present some tables of IIR code fragments for
which d2 has been maximized, and, for a given maximum value of d2, d3 is maximized.

V. Two Upper Bounds on d2
In this section, we will prove two theorems about the quantity “d2” referred to in the previous section.

(These theorems were stated without proof in [6].) We begin with some definitions.
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An (r, k,m) binary convolutional code fragment5 is defined [8] as the set of all output sequences
of r-vectors (x0, x1, · · ·) that can be produced by a fixed (r, k,m) convolutional encoder. An (r, k,m)
convolutional encoder, in turn, is a linear sequential finite-state machine defined by four matrices, A, B,
C, and D, with dimensions

A : m×m

B : k ×m

C : m× r

D : k × r

When the (A,B,C,D) encoder is presented with a sequence of k-dimensional input vectors u0, u1, · · ·,
it moves through a sequence of m-dimensional state vectors in response and produces a sequence of
r-dimensional output vectors. The sj ’s and the xj ’s are defined by the state–space equations

sj+1 = sjA+ ujB

xj = sjC + ujD

 (17)

for j = 0, 1, · · ·. (The initial state s0 is defined to be 0.)

An output sequence x = (x0, x1, · · ·) sometimes is called a codeword. If the input sequence (uj) and
the state sequence (sj) both become zero for all sufficiently large values of j, i.e, if uj = 0 and sj = 0 for
all j ≥ L, then because of the linearity of the state–space equations, Eq. (17), it follows that xj = 0 for
all j ≥ L. In that case, the sequence x = (x0, x1, · · · , xL−1) is called a finite codeword.

Definition 1. If x is a binary vector or a finite sequence of binary vectors, the symbol |x| denotes the
Hamming weight of x, i.e., the number of nonzero components of x. If u is the input to the encoder and
x is the corresponding output, the codeword x is said to have input weight |u| and output weight |x|.

Definition 2. For i ≥ 1, the input-weight-i minimum distance of the (A,B,C,D) code fragment is
defined as

di = min{|x| : |u| = i} (18)

where, in Eq. (18), u is an input to the encoder and x is the corresponding output.

Here are our two main results.

Theorem 1. If C is a binary (r,k,m) convolutional code fragment, then

d2 ≤ min
(⌈

2m

k

⌉
r, 2r +

⌊
2m−1r

k

⌋)
(19)

5 We use the term fragment to include the case of output dimension less than input dimension, i.e., r ≤ k, which commonly
occurs in the construction of turbo-like codes.
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Theorem 2. If C is a binary (r,1,m) convolutional code fragment with m ≥ 2, then

d2 ≤ (2 + 2m−1)r (20)

Equality holds in Expression (20) if and only if the canonical generator matrix for the code fragment is
of the form

G(D) =
(
P1(D)
Q(D)

, · · · , Pr(D)
Q(D)

)

where Q(D) is a primitive polynomial of degree m, and P1(D), · · ·, Pm(D) are polynomials of degree m,
each having constant term 1, none of which are equal to Q(D).

The proof is organized as follows: In Section V.A, we define the state diagram and the zero-input state
diagram for a given (A,B,C,D) encoder. Then in Section V.B, we give a (state-diagram) characterization
of input-weight-2 codewords. In Section V.C, we give the heart of the proof of Theorems 1 and 2, in the
case where the matrix A is nonsingular. Then, in Section V.D, we handle the case of singular A. Then,
in Sections V.E and V.F, we put the pieces together and complete the proofs of the two main theorems.
(We have relegated the proofs of two technical algebraic results to the Appendix.)

A. The State Diagram and the Zero-Input State Diagram

The state diagram corresponding to the (A,B,C,D) encoder defined in Eq. (17) is a finite, directed,
labeled graph with 2m vertices and 2m+k (doubly labeled) edges. The vertices are (labeled by) the 2m

possible states. If s is a state, and if u is an arbitrary k-vector, then there is a directed edge from s to
s′ = sA+ uB labeled (u, x), where x = sC + uD. Symbolically, we write

s
u−→
x
s′

where

s′ = sA+ uB

x = sC + uD

The zero-input (ZI) subdiagram of the state diagram has the same set of vertices as does the full-state
diagram, but includes only those edges produced by inputs of the form u = 0. Thus, the ZI state diagram
has 2m vertices and 2m edges, symbolically written as

s
0−→
x
s′

where

s′ = sA

x = sC
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For example, there is a simple (2, 1, 2) convolutional code defined by the four matrices

A =
(

0 1
0 0

)

B = ( 1 0 )

C =
(

1 0
1 1

)

D = ( 1 1 )



(21)

whose state diagram and zero-input state diagram are shown in Fig. 4. (See also [8], Example 2.5.)

0/00

1/110 00/11

0 1

0/01 1 1

1/00

1/10

1 0

0/11

0 1

1/01 1 1

0/10

0 0

1 0

0/10

0/00

0/01

Fig. 4.  The state diagram and the zero-input state diagram for the code defined in Eq. (21).

Here is a simple lemma we will need later on.

Lemma 1. The total output weight of the 2m zero-input edges is at most 2m−1. Equality holds if and
only if each of the r columns of C has at least one nonzero entry.

Proof. The set of output labels on the zero-input edges is exactly the set of 2m vectors x of the form
x = sC, where s is an arbitrary binary m-vector. The ith component of sC is s · ci, where ci is the ith
column on C. But the mapping s → s × c achieves the values 0 and 1 equally often, except when c is
identically 0. The result now follows. ❐

A viewpoint we shall find useful is that of a codepath in the state diagram. A codepath is defined to
be a path of finite length in the state diagram that begins and ends in the zero state. A typical codepath
can be represented as follows:

s0 = 0 u0−→
x0

s1
u1−→
x1

s2
u2−→
x2
· · · sL−1

uL−1−→
xL−1

sL = 0 (22)

Note that the codepaths of length L are in one-to-one correspondence with the codewords of length L,
the codeword associated with the codepath of Eq. (22) being (x0, · · · , xL−1).
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B. Some General Results on d2

Theorem 3. For a convolutional code fragment, d1 <∞ if and only if for some row bi of B,

biA
L = 0

for some nonnegative integer L.

Proof. A finite codepath of input weight 1 must be of the form

0 ei−→
x0

bi
0−→
x1

biA · · · 0−→
xL−1

biA
L = 0

where ei is a k-vector of weight 1, with the “1” in the ith position. ❐

The next theorem characterizes the codepaths of input weight 2.

Theorem 4. The codepaths of input weight 2 are in one-to-one correspondence with the equations of
the form

biA
ti = bjA

tj (23)

where bi and bj are rows of B and ti and tj are nonnegative integers. (In Eq. (23), we assume (i,ti) 6=
(j, tj).)

Proof. An input sequence of weight 2 that produces a finite codepath must be either of the form

(ei, 0, · · · , 0, ej , 0, · · · , 0)

or else of the form

(ei + ej , 0, · · · , 0)

In the first case, the corresponding state sequence is

0 ei−→ bi
0−→ biA · · · 0−→ biA

t−1 ej−→ biA
t + bj

· · · 0−→ (biAt + bj)As = 0

From this it follows that biAt+s = bjA
s, as required.

In the second case, the state sequence is

0
ei+ej−→ bi + bj

0−→ · · · 0−→ (bi + bj)At = 0

which is equivalent to biAt = bjA
t. ❐
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Theorem 5. Suppose that bi and bj are rows of B and that Eq. (23) holds, for two pairs (i,ti) 6=
(j, tj). Then

d2 ≤ r × (max(ti, tj) + 1)

Proof. From Theorem 4, we see that Eq. (23) implies the existence of an input-weight-2 codepath of
length max(ti, tj)+1. Naturally, the output weight of such a codepath cannot exceed r×(max(ti, tj)+1).

❐

Corollary 1. For any (r,k,m) convolutional code fragment with d1 =∞,

d2 ≤
⌈

2m

k

⌉
r

Proof. If {b1, · · · , bk} are the rows of B, consider the set of k(L + 1) states of the form biA
j , for

i = 1, · · · , k, and j = 0, · · · , L. Each of these states is in the row space of A, and nonzero by Theorem 3,
but since A is m×m, this row space contains at most 2m − 1 nonzero elements. Thus, if k(L+ 1) ≥ 2m,
the pigeon-hole principle implies that two of these states must be equal, i.e., there is an equation of the
form biA

s = bjA
t, with max(s, t) ≤ L. Then by Theorem 5, d2 ≤ (L+ 1)r. Taking L+ 1 = d2m/ke, we

obtain the stated result. ❐

C. Nonsingular A

In this section, we will assume that the matrix A is nonsingular.

Theorem 6. If the matrix A is nonsingular,

d2 ≤ 2r +
⌊

2m−1r

k

⌋
(24)

Proof. Let the k rows of B be denoted by B = {b1, · · · , bk}. If two rows of B are equal, e.g., bi = bj ,
then by Theorem 5, d2 ≤ r, and so Expression (24) certainly is satisfied. Thus, from now on, we assume
the rows of B to be distinct.

If bi is the ith row of B, we denote by ti the least nonnegative integer t such that biAt ∈ B. (Such an
integer must exist; e.g., biAn = bi, where n is the period of A.) If biAti = bj , we write j = π(i). We now
associate with bi the following input-weight-2 codepath, which we call path Pi:

Pi : s0 = 0 ei−→ bi
0−→ · · · 0−→ biA

ti−1 eπ(i)−→ (biAti + bπ(i)) = 0 (25)

We first note that each zero-input edge in the code’s state diagram occurs at most once among the
k paths P1, · · · ,Pk. To see that this is so, assume the contrary, i.e., the existence of an equation of the
form

biA
s = bjA

t (26)
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where i 6= j, s ≤ ti − 2, t ≤ tj − 2, and s ≥ t. Then, since we are assuming that A is invertible, we can
multiply both sides of Eq. (26) by A−t and obtain

biA
s−t = bj (27)

which contradicts the fact that ti is the least integer such that biAti ∈ B.

Since each zero-input edge occurs at most once as an edge in {P1, · · · ,Pk}, and since by Lemma 1
the total output weight of all the zero-input edges is at most 2m−1r, it follows that at least one of the
k codepaths Pi has a total output weight corresponding to its zero input edges of at most b2m−1r/kc.
Since there are only two edges in Pi with nonzero input, the total output weight of Pi is, therefore, at
most 2r + b2m−1r/kc. ❐

D. Singular A

In this section, we will assume that the matrix A is singular, i.e., rank (A) ≤ m− 1.

Theorem 7. If the matrix A is singular,

d2 ≤
(

1 +
⌈

2m−1

k

⌉)
r

Proof. If {b1, · · · , bk} are the rows of B, consider the set of kL states of the form biA
j , for i = 1, · · · , k,

and j = 1, · · · , L. Each of these states is in the row space of A, but since A is singular, this row space
contains at most 2m−1 − 1 nonzero elements. Thus, if kL ≥ 2m−1, the pigeon-hole principle implies that
two of these states must be equal, i.e., there is an equation of the form biA

s = bjA
t, with max(s, t) ≤ L.

Then, by Theorem 5, d2 ≤ (1 + L)r. Taking L = d2m−1/ke, we obtain the desired result. ❐

Lemma 2. If y is a real number, and if r is a positive integer, then

dyer ≤ r + byrc (28)

Proof. Write y = n + θ, where n is an integer and 0 < θ ≤ 1. Then dye = n + 1, byrc = nr + bθrc,
and the inequality (28) becomes

r − bθrc ≤ r

which plainly is true. ❐

Corollary 2. If the matrix A is singular,

d2 ≤ 2r +
⌊

2m−1r

k

⌋

Proof. This follows from Theorem 7 and Lemma 2, where we set y = 2m−1/k:
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d2 ≤
(

1 +
⌈

2m−1

k

⌉)
r by Theorem 7

≤ r + r +
⌊

2m−1r

k

⌋
by Lemma 2

= 2r +
⌊

2m−1r

k

⌋

❐

E. Proof of Theorem 1

Here we need only recapitulate. Corollary 1 tells us that

d2 ≤
⌈

2m

k

⌉
r (29)

for any (r, k,m) convolutional code fragment. Theorem 6 tells us that

d2 ≤ 2r +
⌊

2m−1r

k

⌋
(30)

holds when A is nonsingular, and Corollary 2 tells us that the same bound holds when A is singular.
Thus, both Expressions (29) and (30) hold for any (r, k,m) convolutional code fragment. This proves
Theorem 1. ❐

F. Proof of Theorem 2

We first note that the bound of Expression (20) is simply the second alternative in the bound of
Expression (19) when k = 1, so that if equality holds in Expression (20), we must have

⌈
2m

k

⌉
r ≥ 2r +

⌊
2m−1r

k

⌋

for k = 1, which simplifies to 2m−1 ≥ 2, i.e., m ≥ 2.6

Furthermore, if we apply the bound of Theorem 7 in the case of k = 1, we obtain d2 ≤ (1 + 2m−1)r,
which means that if d2 = (2 + 2m−1)r, the feedback matrix A must be nonsingular.

In summary, a necessary condition for an (r, 1,m) code fragment to have d2 = (2 + 2m−1)r is that
m ≥ 2 and that A be nonsingular. In the remainder of this section, we will assume that these two
conditions are satisfied.

Theorem 4 identifies the codepaths of input weight 2 in terms of equations of the form

biA
ti = bjA

tj (31)

6 If k = 1 and m = 1, the bound of Expression (20) can be improved to d2 ≤ r, with equality if and only if G(D) =
(P1(D)/(D + 1), · · · , Pr(D)/(D + 1)), where each Pi(D) equals either 1 or D. We omit the simple proof of this fact.
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where bi and bj are rows of B. In the case of k = 1, however, B has only one row, which we shall denote
by b. Furthermore, A is nonsingular, so that Eq. (31) can be simplified to

bAt = b (32)

If t is the least positive integer such that Eq. (32) holds, then the corresponding codepath is

s0 = 0 1−→
d
b

0−→
bC

bA
0−→

bAC
· · · 0−→

bAt−2C
bAt−1 1−→

bAt−1C+d
0 (33)

The output weight of this codepath is

d2 = |d|+ |bAt−1C + d|+ |bC|+ |bAC|+ · · ·+ |bAt−2C|

Since both d and bAt−1C + d are r-vectors, we have

|d|+ |bAt−1C + d| ≤ 2r

Furthermore, since bC, bAC, · · · , bAt−2C are output symbols on zero-input edges, it follows from Lemma 1
that

|bC|+ |bAC|+ · · ·+ |bAt−2C| ≤ 2m−1r

It therefore follows that d2 = 2r + 2m−1r if and only if

d = (1, 1, · · · , 1) (34)

bAt−1C = (0, 0, · · · , 0) (35)

and

|bC|+ |bAC|+ · · ·+ |bAt−2C|+ |bAt−1C| = 2m−1r (36)

The sum on the left side of Eq. (36) can be written as

r∑
j=1

t−1∑
i=0

|bAicj |

where cj is the jth column of C. Now according to Theorem A-1 in the Appendix, each of the sums∑t−1
i=0 |bAicj | is at most 2m−1, which means that Eq. (36) holds if and only if

t−1∑
i=0

|bAicj | = 2m−1 for j = 1, · · · , r (37)
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But Theorem A-1 also says that Eq. (37) holds if and only if A is a primitive matrix and b and each
of the cj ’s are nonzero.

It therefore follows that necessary and sufficient conditions for d2 = (2 + 2m−1)r are m ≥ 2 and

A = a primitive m×m matrix

b 6= 0

cj 6= 0 for j = 1, · · · , r

bA−1cj = 0 for j = 1, · · · , r

d = (1, 1, · · · , 1)



(38)

What remains now is to translate the conditions of Eq. (38) into a statement about the code’s generator
matrix. To do this, we use the fact that a generator matrix for a convolutional code fragment defined by
the matrices (A,B,C,D) is given by ([8], Eq. (2.19))

G(D) = b×
[
D−1Im −A

]−1 × [c1, · · · , cr] + [1, · · · , 1] (39)

where b denotes the single row of B and cj is the jth column of C. Combining the fact that[
D−1Im −A

]−1 = D [Im −DA]−1 with Theorem A-2, it follows from Eq. (39) that G(D) is of the
form

G(D) =
(
P1(D)
Q(D)

, · · · , Pr(D)
Q(D)

)

where Q(D) is a primitive polynomial of degree m (the characteristic polynomial of A), and Pj(D) =
DP ′j(D)+Q(D), where P ′j(D) is a polynomial of degree ≤ m−1. However, by Eq. (38) and Theorem A-2,
the coefficient of Dm−1 in P ′j(D) equals qmbA−1cj = 0, so that Pj(D) has degree exactly m. Also, since
the constant term of DP ′j(D) is 0, and the constant term of Q(D) is 1, it follows that the constant term
of Pj(D) also is 1. Finally, since b 6= 0 and cj 6= 0, it follows from Theorem A-2 that P ′j(D) 6= 0, so that
Pj(D) 6= Q(D). ❐

VI. Tables of “ d2-Optimal” Convolutional Code Fragments

In this section, we present Tables 1 through 7, giving the generator matrices (in octal notation) for a
number of convolutional code fragments with the largest possible values of d2.7 The entries in Table 1 for
m ≤ 3 are identical to the corresponding entries in Table 2 of [3]. The entries in Tables 2, 4, and 7, with
m ≤ 4, are taken from [5]. The entries in Table 5, and those in Tables 2, 4, and 7, with m = 5 or m = 6,
are new. In every case, we have verified (theoretically in some cases and numerically in others) that the
given value of d2 is maximal, even though that value may be strictly less than the bound of Theorem 1

7 In the tables, we use the letter h to denote the entries of the generator matrices. This should not be confused with our
previous use of h to denote the output weight of a codeword.
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or Theorem 2, which is given by the db2 entry in the tables. (For (r, 1, 1) code fragments, the bound of
Theorem 2 can be improved to d2 ≤ r, and we have given this as the value of db2 in Tables 1, 3, and 6.)

In some cases, the maximum value of d2 can be obtained only by code fragments with repeated columns
in the generator matrix. Unfortunately, experiment shows that using such code fragments as components
of a turbo code yields poor results. Thus, when the optimal code fragment has repeated columns, we list
it in italics, and immediately below, we give the best code fragment with the same parameters that does
not have repeated columns.

For two IIR code fragments with the same value of d2, we would expect heuristically that the one with
the highest value of d3 will give the best performance. Thus, in choosing the entries for the tables, when
we found two or more code fragments with the largest possible value of d2, we chose code fragments with
the largest value of d3.

If the code fragment is used to build a systematic encoder, the free distance of the resulting code is
dfree = mini(i + di). In the tables, we denote the optimizing value of i by i∗ and the corresponding di
by d∗.8 For example, consider the m = 3 entry from Table 2. There we have h0 = 13 = D3 + D + 1,
h1 = 15 = D3 +D2 + 1, and h2 = 17 = D3 +D2 +D + 1. Thus, the encoder fragment is

G(D) =


(D3 +D2 + 1)
(D3 +D + 1)

(D3 +D2 +D + 1)
(D3 +D + 1)

 (40)

and the corresponding (3, 2, 3) systematic encoder is

G′(D) =


1 0

(D3 +D2 + 1)
(D3 +D + 1)

0 1
(D3 +D2 +D + 1)

(D3 +D + 1)

 (41)

Table 2 says that the value of d2 for the encoder fragment is 3, so that the value of d2 for the (3, 2, 3)
code with generator matrix given by Eq. (41) is d′2 = 2 + d2 = 5. On the other hand, Table 2 says that
d3 for the fragment is 1, so that dfree ≤ 3 + 1 = 4 for this code, and in fact dfree = 4 in this case.

Table 1. The d2-optimal (1,1, m) code fragments.

G = (h1/h0)

m h0 h1 d2 db2 d3 (d∗, i∗)

1 3 2 1 1 ∞ (1,2)

2 7 5 4 4 2 (2,3)

3 15 17 6 6 4 (2,4)

4 31 37 10 10 5 (2,4)

5 75 57 18 18 7 (4,4)

6 147 115 34 34 10 (4,5)

8 The pair i∗, d∗ may not be unique.
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Table 2. The d2-optimal (1,2, m) code fragments.

G =

(
h1/h0

h2/h0

)
m h0 h1 h2 d2 db2 d3 (d∗, i∗)

1 3 1 1 0 1 ∞ (0,2)

2 7 3 5 2 2 0 (0,3)

3 13 15 17 3 4 1 (1,3)

4 23 35 27 6 6 2 (2,3)

5 45 43 61 10 10 3 (3,3)

Table 3. The d2-optimal (2,1, m) code fragments.

G = (h1/h0 h2/h0 )

m h0 h1 h2 d2 db2 d3 (d∗, i∗)

1 3 2 1 2 2 ∞ (2,2)

2 7 5 5 8 8 4 (4,3)

2 7 5 3 6 8 4 (4,3)

3 13 17 15 12 12 7 (7,3)

4 23 33 37 20 20 9 (6,4)

5 73 45 51 36 36 14 (6,5)

6 147 115 101 68 68 20 (6,5)

Table 4. The d2-optimal (1,3, m) code fragments.

G =

(
h1/h0

h2/h0

h2/h0

)

m h0 h1 h2 h3 d2 db2 d3 (d∗, i∗)

2 7 5 3 1 1 2 0 (1,2), (0,3)

3 13 15 17 11 2 3 1 (2,2), (1,3), (0,4)

4 23 35 33 25 3 4 1 (1,3)

5 51 73 65 61 7 7 1 (1,3)

17



Table 5. The d2-optimal (2,2, m) code fragments.

G =

(
h1/h0 h2/h0

h3/h0 h4/h0

)
m h0 h1 h2 h3 h4 d2 db2 d3 (d∗, i∗)

1 3 1 2 2 1 2 2 ∞ (2,2)

2 7 3 3 5 5 4 4 0 (0,3)

2 7 1 5 5 3 3 4 1 (1,3)

3 15 3 11 11 13 7 8 3 (1,4)

4 31 35 23 23 21 12 12 3 (3,3)

Table 6. The d2-optimal (3,1, m) code fragments.

G = (h1/h0 h2/h0 h3/h0 )

m h0 h1 h2 h3 d2 db2 d3 (d∗, i∗)

1 3 2 1 1 3 3 ∞ (3,2)

2 7 5 5 5 12 12 6 (6,3)

2 7 5 3 6 8 12 6 (6,3)

3 13 17 15 11 18 18 9 (9,3)

4 23 35 27 37 30 30 13 (10,4)

5 73 45 51 47 54 54 20 (10,5)

6 147 115 101 135 102 102 29 (11,5)

Table 7. The d2-optimal (1,4, m) code fragments.

G =

h1/h0

h2/h0

h3/h0

h4/h0


m h0 h1 h2 h3 h4 d2 db2 d3 (d∗, i∗)

1 3 1 1 1 1 0 1 ∞ (0,2)

2 7 5 5 5 5 0 1 2 (0,2)

2 7 1 2 3 5 0 1 0 (0,2)

3 13 15 17 11 7 2 2 0 (0,3)

4 23 35 33 37 31 3 4 1 (1,3)

5 51 47 61 63 75 5 6 1 (1,3)
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VII. Conclusions

In this article, we have introduced a class of concatenated coding systems that includes both classical
“parallel” turbo codes and “serial” turbo codes. We have defined the important parameters βM (the
interleaving exponent) and hM (the effective free distance) for these systems. Finally, we stated and
proved two upper bounds on the “d2 parameter” for the component convolutional codes, which can be
used to design systems with large hM .
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Appendix

Proofs of Theorems A-1 and A-2

In this Appendix, we shall give proofs of two results that we used in the proofs in Section V.

Theorem A-1. If A is a nonsingular binary m × m matrix with period n, and if b and c are arbitrary
nonzero m-vectors, and if t is an integer ≤ n, then

|bc|+ |bAc|+ · · ·+ |bAt−1c| ≤ 2m−1

with equality possible only if A is similar to the companion matrix of an mth degree primitive polynomial.

Proof. Suppose that the minimal polynomial of A is Q(x), where

Q(x) = xk − h1x
k−1 − · · · − hk

where hk 6= 0 and k ≤ m. Then we have

Aj =
k∑
i=1

hiA
j−i for all j ≥ k

If we multiply this matrix equation on the left by b and on the right by c, and if we define xj = bAjc, we
obtain

xj =
k∑
i=1

hixj−1 for all j ≥ k

Thus, x = (x0, x1, · · · , xn−1) is a nonzero codeword in the (n, k) cyclic code with parity-check polynomial
equal to h(x). Then by a known result about cyclic codes ([9, pp. 81–83], |x| ≤ 2k−1, with equality iff h(x)
is primitive. Thus, since k ≤ m, we can have |x| = 2m−1 iff k = m and h(x) is a primitive polynomial of
degree m. But since A is m×m, it follows that both the minimal and characteristic polynomials of A are
equal to h(x), so that A is similar to the companion matrix of an mth-degree primitive polynomial. ❐

Theorem A-2. If A is a nonsingular nonderogatory9 m × m matrix with characteristic polynomial

Q(D) = 1− q1D − · · · − qmDm

and if b and c are arbitrary m-vectors, then the rational function

Fb(D) = b(Im −DA)−1c

is of the form

9 A nonderogatory matrix is one for which the characteristic and minimal polynomials are equal [7].
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Pb,c(D)
Q(D)

where Pb,c(D) is a polynomial of degree ≤ m−1. The coefficient of 1 in Pb,c(D) is bc, and the coefficient
of Dm−1 in Pb,c(D) is qm bA−1c. Finally, if Q(D) is irreducible, then Pb,c(D) is the zero polynomial if
and only if one or both of b and c are zero.

Proof. We have

(Im −DA)−1 = I +AD +A2D2 + · · ·

so that

Pb,c(D) =
∑
j≥0

(bAjc)Dj

=
∑
j≥0

fjD
j (say) (A-1)

Now since Q(D) is the characteristic polynomial for A, we have

At = q1A
t−1 + · · ·+ qmA

t−m, for t ≥ m (A-2)

Combining Eqs. (A-1) and (A-2), we obtain

ft = q1ft−1 + · · ·+ qmft−m, for t ≥ m

Hence, if we multiply Pb,c(D) by Q(D), we obtain a polynomial of degree ≤m− 1:

Pb,c(D)Q(D) = f0 + (f1 − q1f0)D + · · ·+ (fm−1 − q1fm−2 − · · · − qm−1f0)Dm−1

= g0 + g1D + · · ·+ gm−1D
m−1 (A-3)

If we recall that fj = bAjc, it follows from Eq. (A-3) that

g0 = bc (A-4)

g1 = b(A− q1I)c

...

gm−1 = b(Am−1 − q1A
m−2 − · · · − qm−1Im)c (A-5)
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Equation (A-4) shows that the coefficient of 1 in Pb,c(D), i.e., g0, is bc. To prove the assertion about the
coefficient of Dm−1, i.e., gm−1, observe that if we multiply Eq. (A-2) with t = m by A−1, we obtain

qmA
−1 = Am−1 − q1A

m−2 − · · · qm−1Im

Substituting this expression into Eq. (A-5), we find that gm = qmbA
−1c, as asserted.

Lastly we assume that Q(D) is irreducible and investigate the possibility that, for a fixed pair (b, c),
the polynomial Pb,c(D) is identically zero. By Eq. (A-1), this is equivalent to

bAjc = 0 for j = 0, 1, · · · (A-6)

But by a known result, if the minimal polynomial of A has degree m and is irreducible, and if c 6= 0, the
vectors c, Ac, · · · , Am−1c are linearly independent ([9, Chapter 7]). Thus, if Eq. (A-6) holds, it must be
that b = 0. In summary, Pb,c(D) = 0 if and only if either b or c (or both) is zero. ❐
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